This page no longer updated from 31 October 2001. Latest version can be found at www.astronautix.com

astronautix.com L3M-1970

L3M - Cutaway View
L3M - Cutaway View
Cutaway views of early and later L3M manned lunar lander designs.

26,904 bytes. 629 x 336 pixels.


Class: Manned. Type: Lunar Lander. Nation: USSR. Manufacturer: OKB-1.

The original draft project prior to 1970 for the N1M-L3M lunar landing complex anticipated use of a two-launch profile. On the first launch a Block R TB braking stage would be put on a translunar trajectory. The TB would place itself in lunar orbit. Next, the manned L3M lunar lander would be launched. This new spacecraft was much larger than the LK, with a mass of 21 tonnes landed on the lunar surface. The L3M would dock, tail-first, with the TB stage in lunar orbit. The RTB would act as a lunar crasher stage. The L3M would separate from the TB just over the lunar surface, then hover to a soft landing. The crew would spend up 16 days on the surface. Following completion of their work, the landing legs would be left behind, and the L3M would launch itself on a trans-earth trajectory. Just before arrival at earth, the crew would enter their Soyuz capsule, separate from the L3M, and make a lifting re-entry into the earth's atmosphere. It was felt that within the existing funding allocation of the original N1-L3 programme, enough N1's would be available to support a series of landings in 1978-1980.


Soviet Lunar LandersSoviet Lunar Landers - Comparison of Soviet lunar lander designs. Only the LK reached the hardware stage.

23,098 bytes. 755 x 172 pixels.


In this earlier L3M, the Soyuz return capsule is perched atop the landing stage. A small toroidal crew compartment provides accommodation for space-suited cosmonauts to land the vehicle on the moon. Evidently the crew, which would have been limited to two cosmonauts, would be required to space walk from the Soyuz capsule to the toroidal chamber prior to the landing attempt. A return spacewalk would have to be made after ascent from the surface. This L3M had a landed mass of 21 tonnes on the surface, an ascent mass of 18 tonnes, a trans-earth injection spacecraft mass of 5 tonnes, and sufficient supplies for 14 to 16 days of operations on the surface.
Specification

Craft.Crew Size: 2. Design Life: 14 - 16 days. Total Length: 7.9 m. Maximum Diameter: 4.5 m. Total Mass: 23,000 kg.



L3ML3M - External views of early and later L3M manned lunar lander designs.

22,843 bytes. 630 x 340 pixels.


L3M-1970 Chronology


01 January 1970 N1M-L3M lunar landing complex draft project

The original draft project anticipated use of a two-launch profile. On the first launch a Block R TB braking stage would be put on a translunar trajectory. The TB would place itself in lunar orbit. Next, the manned L3M lunar lander would be launched. This new spacecraft was much larger than the LK, with a mass of 21 tonnes landed on the lunar surface. The L3M would dock, tail-first, with the TB stage in lunar orbit. The RTB would act as a lunar crasher stage. The L3M would separate from the TB just over the lunar surface, then hover to a soft landing. The crew would spend up 16 days on the surface. Following completion of their work, the landing legs would be left behind, and the L3M would launch itself on a trans-earth trajectory. Just before arrival at earth, the crew would enter their Soyuz capsule, separate from the L3M, and make a lifting re-entry into the earth's atmosphere. It was felt that within the existing funding allocation of the original N1-L3 programme, enough N1's would be available to support a series of landings in 1978-1980.


01 June 1970 Development of engines for N1F authorised Launch Vehicle: N1F.

Full go-ahead to develop a liquid hydrogen/liquid oxygen high energy upper stage for the N1F. The multi-engine Block Sr would have a propellant mass of 66.4 tonnes. In July Kuznetsov was given authorisation to design substantially improved versions of the N1 lower stage rocket engines. The N1 that would utilise these engines was designated the N1F and would have a payload to a 225 km orbit of 105,000 kg.



Bibliography:



Back to Index
Last update 12 March 2001.
Contact Mark Wade with any corrections or comments.
Conditions for use of drawings, pictures, or other materials from this site..
© Mark Wade, 2001 .