| Encyclopedia Astronautica |
Home | LM RCS |
North American completed a study of CSM-LEM transposition and docking. During a lunar mission, after the spacecraft was fired into a trajectory toward the moon, the CSM would separate from the adapter section containing the LEM. It would then turn around, dock with the LEM, and pull the second vehicle free from the adapter. The contractor studied three methods of completing this maneuver: free fly-around, tethered fly- around, and mechanical repositioning. Of the three, the company recommended the free fly-around, based on NASA's criteria of minimum weight, simplicity of design, maximum docking reliability, minimum time of operation, and maximum visibility.
Also investigated was crew transfer from the CM to the LEM, to determine the requirements for crew performance and, from this, to define human engineering needs. North American concluded that a separate LEM airlock was not needed but that the CSM oxygen supply system's capacity should be increased to effect LEM pressurization.
On November 29, North American presented the results of docking simulations, which showed that the free flight docking mode was feasible and that the 45-kilogram (100-pound) service module (SM) reaction control system engines were adequate for the terminal phase of docking. The simulations also showed that overall performance of the maneuver was improved by providing the astronaut with an attitude display and some form of alignment aid, such as probe.
Grumman and NASA announced the selection of four companies as major LEM subcontractors:
A bidders' conference was held at Grumman for a LEM mechanically throttled descent engine to be developed concurrently with Rocketdyne's helium injection descent engine. Corporations represented were Space Technology Laboratories; United Technology Center, a division of United Aircraft Corporation; Reaction Motors Division, Thiokol Chemical Corporation; and Aerojet-General Corporation. Technical and cost proposals were due at Grumman on April 8.
Grumman recommended that the LEM reaction control system (RCS) be equipped with dual interconnected tanks, separately pressurized and employing positive expulsion bladders. The design would provide for an emergency supply of propellants from the main ascent propulsion tanks. The RCS oxidizer to fuel ratio would be changed from 2.0:1 to 1.6:1. MSC approved both of these changes.
Grumman built a full-scale cardboard model of the LEM to aid in studying problems of cockpit geometry, specifically the arrangement of display panels. This mockup was reviewed by MSC astronauts and the layout of the cockpit was revised according to some of their suggestions.
Also Grumman reported that a preliminary analysis showed the reaction control system plume heating of the LEM landing gear was not a severe problem. [This difficulty had been greatly alleviated by the change from five to four landing legs on the vehicle.
After careful study, Grumman proposed to MSC 15 possible means for reducing the weight of the LEM. These involved eliminating a number of hardware items in the spacecraft; two propellant tanks in the vehicle's ascent stage and consequent changes in the feed system; two rather than three fuel cells; and reducing reaction control system propellants and, consequently, velocity budgets for the spacecraft. If all these proposed changes were made, Grumman advised, the LEM could be lightened significantly, perhaps by as much as 454 kilograms (1000 pounds).
MSC defined the LEM terminal rendezvous maneuvers. That phase of the mission would begin at a range of 9.3 kilometers (five nautical miles) from the CSM and terminate at a range of 152.4 meters (500 feet). Before rendezvous initiation, closing velocity should be reduced to 61 meters (200 feet) per second by use of the ascent engine. The reaction control system should be used exclusively thereafter.
MSC directed Grumman to integrate LEM translation and descent engine thrust controllers. The integrated controller would be lighter and easier to install; also it would permit simultaneous reaction control system translation and descent engine control. Grumman had predicted that such a capability might be required for touchdown.
ASPO asked Grumman to study whether attitude control of the docked vehicles was practicable using the LEM's stabilization and control system (RCS). Grumman also was to evaluate the RCS fuel requirements for a five-minute alignment period to permit two star sightings. ASPO further directed the contractor to determine RCS fuel requirements for a second alignment of the LEM's inertial measurement unit during descent coast. This second alignment was needed for the required landing accuracy from a Hohmann descent.
North American was directed by NASA to study feasibility of using the LEM propulsion system as backup to the SM propulsion system. The most important item in the contractor's analysis was strength of the docking structure and its ability to withstand LEM main-engine and reaction control system thrusting.
MSC established the configuration of the reaction control system engines for both the service module (SM) and the LEM, and informed North American and Grumman accordingly. The Center also directed North American to propose a design for an electric heater that would provide thermal control in lunar orbit and during contingency operations. The design would be evaluated for use in Block I spacecraft as well.
Radio Corporation of America's (RCA) Aerospace Systems Division received a 9 million contract from Grumman for the LEM attitude translation control assembly (ATCA). The ATCA, a device to maintain the spacecraft's attitude, would fire the reaction control system motors in response to signals from the primary guidance system.
At a North American-Grumman interface meeting on September 23-24, two possible relative role alignments for CSM-active docking were agreed upon. The major item blocking final selection was the effect of the SM's reaction control system engines upon the LEM antennas. ASPO requested Grumman to investigate the problem, to analyze the design penalties of the two-attitude docking mode, and to report any other factors that would influence the final attitude selection.
Grumman received from Houston criteria for firing times of the SM reaction control system (RCS). These served as a basis for the design of the LEM's steerable antenna. The thermal design proposed by Dalmo-Victor, the vendor, appeared feasible to watchdogs in MSC's Instrumentation and Electronic Systems Division. On the other hand, the unbalanced wind torque produced by the RCS engines was still a problem. RCA and Dalmo-Victor's estimates of the amount of torque varied considerably, and Grumman consequently undertook a study of this problem.
From MSC, Grumman received updated criteria to be used in the design of the LEM's landing gear. The gear must be designed to absorb completely the landing impact; it must also provide adequate stability for the vehicle under varying surface conditions, which were spelled out in precise detail.) Maximum conditions that MSC anticipated at touchdown were:
vertical velocity - 3.05 m (10 ft) per sec
horizontal velocity - 1.22 m (4 ft) per sec
spacecraft attitude
pitch - 3 degrees
roll - 3 degrees
yaw - random
attitude rates - 3 degrees per sec
At touchdown, all engines (descent and reaction control would be off. "It must be recognized," MSC emphasized, "that the vertical and horizontal velocity values . . . are also constraints on the flight control system."
Dalmo-Victor studied thermal-demanded weight increases for the LEM's steerable antenna. Investigators reported to Grumman and RCA that, in the plume of the CSM's reaction control engines, 1.18 kg (2.5 lbs) was necessary merely for the survival of the antenna; another 1.18 kg would be required for tracking during this impingement.
The Structures and Mechanics Division (SMD) summarized the thermal status of antennas for the Apollo spacecraft (both CSM and LEM). Generally, most troubles stemmed from plume impingement by the reaction control or radiation from the service propulsion engines. These problems, SMD reported, were being solved by increasing the weight of an antenna either its structural weight or its insulation; by shielding it from the engines' exhaust; by isolating its more critical components; or by a combination of these methods.
The Structures and Mechanics Division approved a low-burst factor for the gaseous helium tanks on the LEM (as recommended by Grumman). This change permitted a substantial lightening of the spacecraft's propulsion systems: descent 45 kg (99 lbs); ascent, 13 kg (29 lbs); reaction control, 2.3 kg (5 lbs).
MSC canceled plans (originally proposed by North American) for a device to detect failures in the reaction control system (RCS) for Block I CSMs. This was done partly because of impending weight, cost, and schedule penalties, but also because, given an RCS failure during earth orbit, the crew could detect it in time to return to earth safely even without the proposed device. This action in no way affected the effort to devise such a detection system for the Block II CSM or the LEM, however.
An evaluation was made of the feasibility of utilizing a probe-actuated descent engine cutoff light during the LEM lunar touchdown maneuver. The purpose of the light, to be actuated by a probe extending 0.9 m (3 ft) beyond the landing gear pads, was to provide an engine cutoff signal for display to the pilot. Results of the study indicated at least 20 percent of the pilots failed to have the descent engine cut off at the time of lunar touchdown. The high percentage of engine-on landings was attributed to
A LEM/CSM interface meeting uncovered a number of design problems and referred them to the Systems Engineering Division (SED) for evaluation: the requirement for ground verification of panel deployment prior to LEM withdrawal; the requirement for panel deployment in earth orbit during the SA-206 flight; the absence of a backup to the command sequencer for jettisoning the CSM (Flight Projects Division [FPD] urged such a backup signal); and Grumman's opposition to a communications link with the LEM during withdrawal of the spacecraft (FPD felt that such a link was needed through verification of reaction control system ignition). SED's recommendations on these issues were anticipated by April 22.
MSC and Grumman reviewed the program for the LEM's reaction control system. The only issue outstanding was Grumman's in-house effort: MSC felt that that effort was "overestimated" and that the manufacturer alone should not handle support from subcontractors.
Grumman was requested to attend a meeting at MSC and to present their reasons as to why the LEM reaction control system (RCS) propellant tanks could not be of common technology with the CSM RCS propellant tanks. Grumman was to also say why an additional development program was required for the LEM tanks.
Structures and Mechanics Division (SMD) reported that Grumman had found two thermal problems with the LEM:
MSC authorized North American to make a number of significant hardware changes:
Several important activities were noted during the reporting period: (1) Qualification of the new reefing line cutters was progressing satisfactorily and scheduled for completion in October 1965. (The cutter had been used successfully on the last two earth landing system tests conducted at El Centro); (2) the helium storage tank for the LEM reaction control subsystem successfully passed qualification tests; and (3) the Aero Spacelines' new aircraft, "Super Guppy," made its maiden flight from Van Nuys, Calif., to Mojave Airfield, Calif. The new aircraft had the capability of airlifting the spacecraft-LEM-adapter as well as providing vital backup for the "Pregnant Guppy" aircraft.
Officials from the U.S. Public Health Service (PHS) and the Department of Agriculture met at MSC to discuss informally the problem of back contamination. They listened to briefings on the mission profile for Apollo; reentry heating rates; present thinking at the Center on the design of the Lunar Sample Receiving Station (LSRS); and MSC's plans (none) for quarantining the astronauts.
James Goddard, Assistant Surgeon General in PHS, presented three broad areas of concern:
On October 15, Lawrence B. Hall, Planetary Quarantine Officer in NASA's Office of Space Science and Applications, summarized for Deputy Administrator Hugh L. Dryden the September 27 meeting, and recommended that such informal discussions continue. "I believe," he told Dryden, "that . . . the Manned Spacecraft Center is more fully aware of the point of view of the regulatory agencies on this matter. Unfortunately, the regulatory agencies still do not understand the reasons for the Manned Spacecraft Center's reluctance to face this problem."
MSC instructed North American to:
MSC Director Robert R. Gilruth requested of Jet Propulsion Laboratory Director William H. Pickering that JPL fire the Surveyor spacecraft's vernier engine after the Surveyor landed on moon, to give insight into how much erosion could be expected from an LM landing. The LM descent engine was to operate until it was about one nozzle diameter from landing on the lunar surface; after the Surveyor landed, its engine would be about the same distance from the surface. Gilruth told Pickering that LaRC was testing a reaction control engine to establish surface shear pressure forces, surface pressures, and back pressure sources, and offered JPL that data when obtained.
Donald K. Slayton said there was some question about including extravehicular activity on the AS-503 mission, but he felt that, to make a maximum contribution to the lunar mission, one period of EVA should be included. Slayton pointed out that during the coast period (simulating lunar orbit) in the current flight plan the EVA opportunity appeared best between hour 90 and hour 100. Two primary propulsion system firings would have been accomplished and the descent stage of the LM would still be attached.
Slayton specified that EVA should consist of a crewman exiting through the LM forward hatch and making a thorough orbital check of the LM before reentering through the same hatch. He said EVA on AS-503 would provide:
W. R. Downs, Special Assistant for Advanced Systems, MSC Structures and Mechanics Division, discovered that bare or defectively insulated silver-covered copper wires exposed to glycol/water solutions would ignite spontaneously and burn in oxygen. Copper wire or nickel-covered copper wire under identical conditions did not ignite. The laboratory results were confirmed in work at the Illinois Institute of Technology. In a June 13 memorandum, the Chief of the Structures and Mechanics Division recommended that if additional testing verified that nickel-coated wires were free of the hazard, consideration should be given to an in-line substitution of nickel-coated wires for silver-coated wires in the LM. It was understood that the Block II CSM already had nickel-coated wires. In a June 20 memo to the ASPO Manager, the Director of Engineering and Development pointed out that silver-plated pins and sockets in connectors would offer the same hazards. He added that Downs had also identified a chelating agent that would capture the silver ion and apparently prevent the reaction chain. In a July 24 memorandum, ASPO Manager George Low said that, in view of recent spills of ethylene glycol and water mixtures, spacecraft contractors North American Aviation and Grumman Aircraft Engineering had been directed to begin actions immediately to ensure that a fire hazard did not exist for the next manned spacecraft. Actions were to include identification of the location of silver or silver-covered wires and pins and of glycol spills.
MSC informed NASA Hq. that a reaction control system (RCS) engine ruptured at Marquardt Corp. the previous night during a heater integration test within a normal duty cycle run. This was a development test; the cause of the rupture was unknown at the time of the report. A second RCS failure occurred at Marquardt March 6 during a rerun of the LM heater integration tests. The rerun series started March 2. No facility damage or personnel injuries were reported from either incident. Investigation was under way at Marquardt by both NASA and Marquardt engineers to determine the cause of the failures and the effect on the program.
In his weekly progress report to the NASA Administrator, Deputy Administrator for Manned Space Flight George E. Mueller cited several important Apollo events during the first week of June:
Events and the situation during June and July had indicated to Low that the only way for the "in this decade" goal to be attained was to launch the Saturn 503/CSM 103 LM-3 mission in 1968. During June and July the projected launch slipped from November to December, with no assurance of a December launch. Later, Low recalled "the possibility of a circumlunar or lunar orbit mission during 1968, using AS-503 and CSM 103 first occurred to me as a contingency mission."
During the period of July 20-August 5, pogo problems that had arisen on Apollo 6 seemed headed toward resolution; work on the CSM slowed, but progress was satisfactory; delivery was scheduled at KSC during the second week in August and the spacecraft was exceptionally clean. The LM still required a lot of work and chances were slim for a 1968 launch.
On August 7, Low asked MSC's Director of Flight Operations Christopher C. Kraft, Jr., to look into the feasibility of a lunar orbit mission for Apollo 8 without carrying the LM. A mission with the LM looked as if it might slip until February or March 1969. The following day Low traveled to KSC for an AS-503 review, and from the work schedule it looked like a January 1969 launch.
August 9 was probably one of the busiest days in George Low's life; the activities of that and the following days enabled the United States to meet the "in this decade" goal. At 8 :45 a.m. he met with MSC Director Robert R. Gilruth and told him he had been considering a lunar orbit mission. Gilruth was highly enthusiastic. At 9:00 a.m. Low met with Kraft and was informed that the mission was technically feasible from ground control and spacecraft computer standpoint. (A decision had been made several months earlier to put a Colossus onboard computer program on the 103 spacecraft.)
At 9:30 a.m. Low met with Gilruth, Kraft, and Director of Flight Crew Operations Donald K. Slayton, and they unanimously decided to seek support from MSFC Director Wernher von Braun and Apollo Program Director Samuel C. Phillips. Gilruth called von Braun and, after briefly outlining the plan, asked if they could meet in Huntsville that afternoon. Low called Phillips, who was at KSC, and asked whether he and KSC Director Kurt Debus could participate and a meeting was set up for 2:30.
Present at the 2:30 p.m. meeting at MSFC were von Braun, Eberhard Rees, Lee James, and Ludie Richard, all of MSFC: Phillips and George Hage, both of OMSF; Debus and Rocco Petrone, MSFC; and Gilruth, Low, Kraft, and Slayton of MSC. Low outlined the hardware situation and told the group it was technically feasible to fly the lunar orbit mission in December 1968, with the qualification that Apollo 7 would have to be a very successful mission. If not successful, Apollo 8 would be another earth-orbital mission. Kraft made a strong point that to gain lunar landing benefits Apollo 8 would have to be a lunar orbital rather than a circumlunar mission. All were enthusiastic. Phillips began outlining necessary events: KSC said it would be ready to support such a launch by December 1; MSFC felt it would have no difficulties; MSC needed to look at the differences between spacecraft 103 and 106 (the first spacecraft scheduled to leave earth's atmosphere) and had to find a substitute for the LM. The meeting was concluded at 5:00 p.m. with an agreement to meet in Washington August 14. This would be decision day and, if "GO," Phillips planned to go to Vienna and discuss the plan with Associate Administrator for Manned Space Flight George E. Mueller and NASA Administrator James E. Webb (who were attending a United Nations Conference). Preliminary planning would be secret, but if and when adopted by the agency the plan would be made public immediately.
Still on August 9, in another meeting at MSC at 8:30 p.m., Low met with Kenneth S. Kleinknecht, George Abbey, and C. H. Bolender of MSC, and Dale Myers, North American Rockwell. Bolender left immediately for Bethpage, N.Y., to find a substitute for the LM; and Myers left for Downey, Calif., to get the CM going.
On the following day there were still no obvious insurmountable problems that might block the plan. Kleinknecht was studying the differences between spacecraft 103 and 106, where the high-gain antenna might be a problem. It seemed possible to use LM-2 to support the flight, but Joseph Kotanchik, MSC, suggested flying a simple crossbeam instead of a LM in the event the pogo oscillation problem remained and pointed out that even if pogo was solved the LM would not be needed. Low called Richard and Hage, who agreed with Kotanchik but still wanted mass representation to avoid possible dynamic problems. Low then called William Bergen, of North American, who was not too receptive to the plan.
On August 12 Kraft informed Low that December 20 was the day if they wanted to launch in daylight. With everyone agreeing to a daylight launch, the launch was planned for December 1 with a "built-in hold" until the 20th, which would have the effect of giving assurance of meeting the schedule. LTA (LM test article)-B was considered as a substitute; it had been through a dynamic test vehicle program, and all except Kotanchik agreed this would be a good substitute. Grumman suggested LTA-4 but Low decided on LTA-B.
Kleinknecht had concluded his CSM 103-106 configuration study by August 13 and determined the high-gain antenna was the most critical item. Kraft was still "GO" and said December 20-26 (except December 25) offered best launch times; he had also looked at January launch possibilities. Slayton had decided to assign the 104 crew to the mission. He had talked to crew commander Frank Borman and Borman was interested.
Participants in the August 14 meeting in Washington were Low, Gilruth, Kraft, and Slayton from MSC; von Braun, James, and Richard from MSFC; Debus and Petrone from KSC; and Deputy Administrator Thomas Paine, William Schneider, Julian Bowman, Phillips, and Hage from NASA Hq. Low reviewed the spacecraft aspects; Kraft, flight operations; and Slayton, flight crew support. MSFC had agreed on the LTA-B as the substitute and were still ready to go; and KSC said they would be ready by December 6.
While the meeting was in progress, Mueller called from Vienna to talk to Phillips. He was cool to the proposed idea, especially since it preceded Apollo 7, and urged Phillips not to come to Vienna, adding that he could not meet with the group before August 22. The group agreed they could not wait until August 22 for a decision and agreed to keep going, urging again that Phillips go to Vienna and present their case.
At this point Paine reminded them that not too long before they were making a decision whether to man 503, and now they were proposing a bold mission. He then asked for comments by those around the table and received the following responses:
von Braun - Once you decided to man 503 it did not matter how far you went.
Hage - There were a number of places in the mission where the decision could be made, minimizing the risk.
Slayton - Only chance to get to the moon before the end of 1969.
Debus - I have no technical reservations.
Petrone - I have no reservations.
Bowman - A shot in the arm for manned space flight.
James - Manned safety in this and following flights enhanced.
Richard - Our lunar capability will be enhanced by flying this mission.
Schneider - My wholehearted endorsement.
Gilruth - Although this may not be the only way to meet our goal, it enhances our possibility. There is always risk, but this is in path of less risk. In fact, the minimum risk of all Apollo plans.
Kraft - Flight operations has a difficult job here. We need all kind of priorities; it will not be easy to do, but I have confidence. It should be lunar orbit and not circumlunar.
Low - Assuming Apollo 7 is a success there is no other choice.
After receiving this response, Paine congratulated them on not being prisoners of previous plans and said he personally felt it was the right thing to do. Phillips then said the plan did not represent shortcuts and planned to meet with Mueller on August 22. He reiterated Mueller's reservations, and then agreed to move out on a limited basis, since time was critical.
On August 15 Phillips and Paine discussed the plan with Webb. Webb wanted to think about it, and requested further information by diplomatic carrier. That same day Phillips called Low and informed him that Mueller had agreed to the plan with the provisions that no full announcement would be made until after the Apollo 7 flight; that it could be announced that 503 would be manned and possible missions were being studied; and that an internal document could be prepared for a planned lunar orbit for December.
Phillips and Hage visited MSC August 17, bringing the news that Webb had given clear-cut authority to prepare for a December 6 launch, but that they could not proceed with clearance for lunar orbit until after the Apollo 7 flight, which would be an earth-orbital mission with basic objectives of proving the CSM and Saturn V systems. Phillips said that Webb had been "shocked and fairly negative" when he talked to him about the plan on August 15. Subsequently, Paine and Phillips sent Webb a lengthy discourse on why the mission should be changed, and it was felt he would change his mind with a successful Apollo 7 mission.
Apollo 7 - flown October 11-22 - far exceeded Low's expectations in results and left no doubts that they should go for lunar orbit on Apollo 8. At the November 10 Apollo Executive meeting Phillips presented a summary of the activities; James gave the launch vehicle status; Low reported on the spacecraft status and said he was impressed with the way KSC had handled its tight checkout schedule; Slayton reported on the flight plan; and Petrone on checkout readiness. Petrone said KSC could launch as early as December 10 or 12. Phillips said he would recommend to the Management Council the next day for Apollo 8 to go lunar orbit. Following are the reactions of the Committee members:
Walter Burke, McDonnell Douglas - the S-IVB was ready but McDonnell Douglas favored circumlunar rather than lunar orbit;
Hilliard Paige, GE - favored lunar orbit;
Paul Blasingame, AC - guidance and navigation hardware was ready, lunar orbit;
C. Stark Draper, Massachusetts Institute of Technology - we should go ahead;
Bob Evans, IBM - go;
George Bunker of Martin, T. A. Wilson of Boeing, Lee Atwood of North American, Bob Hunter of Philco-Ford, and Tom Morrow of Chrysler - lunar orbit.
At the Manned Space Flight Management Council Meeting on November 11 Mueller reported that the proposal had been discussed with the Apollo Executive Committee, Department of Defense, the Scientific and Technical Advisory Committee (STAC), and the President's Science Advisory Committee (PSAC). STAC had made a penetrating review and reacted positively and PSAC was favorably disposed toward the plan but made no firm recommendation.
After a series of meetings, on November 11 Paine said Apollo 8 was to go lunar orbit. The decision was announced publicly the following day. Low's initiative had paid off; the final decision to go to the moon in 1968 was made with the blessings of all of NASA's decision-makers, the Apollo Executive Committee, STAC, and PSAC.
Major items of discussion during the Manned Space Flight Management Council meeting in Washington were the Apollo 15 anomalies. These included parachute collapse during landing, lunar module descent battery, lunar surface drill, and steering mechanism on the LRV. Also discussed were the Apollo 16 preparations and the feasibility of TV coverage of the lunar rover during traverse.
The most likely cause of the parachute collapse was damage from burning raw RCS fuel (monomethyl hydrazine) being expelled during depletion firing. Corrective action included landing with reaction control system propellants on board for a normal landing and biasing the propellant load to a slight excess of oxidizer and increasing the time delay inhibiting the rapid propellant dump, to avoid fuel contacting the parachute riser and suspension lines during low-altitude-abort land landings.